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Abstract
We obtain several higher order periodic solutions of (i) a coupled symmetric
φ4 model in an external field, (ii) a coupled asymmetric φ4 model, (iii) a
coupled symmetric–asymmetric φ4 model and (iv) a coupled φ6 model in
terms of Lamé polynomials and obtain the corresponding hyperbolic solutions
in the appropriate limit. All these solutions are unusual in the sense that
while they are the solutions of the coupled problems, they are not the solutions
of the corresponding uncoupled problems. Possible physical applications of
these solutions include periodic domain walls in magnetic and structural phase
transitions as well as in field theory.

PACS numbers: 05.45.Yv, 03.50.−z, 11.27.+d

1. Introduction

Coupled double well (φ4) and triple well (φ6) one-dimensional potentials are prevalent in
both condensed matter physics and field theory. Few examples of φ4 type double well models,
which are of current interest, include spin configurations, domain walls and magnetic phase
transitions in multiferroic materials [1, 2] and ω phase transition in various elements (e.g. Ti
and Zr) and alloys [3]. Similarly, coupled φ6 models are of interest in the context of structural
phase transitions [4, 5] as well as scalar field theories [6–8]. In two recent publications [9, 10],
we obtained a large number of periodic solutions, in terms of the Lamé polynomials of order
1 [11, 12], for (i) a coupled symmetric φ4 model in an external field and (ii) an asymmetric
coupled φ4 model, both models with a biquadratic coupling. Further, in another publication
[13], we obtained a large number of periodic solutions of a coupled φ6 model. All those
solutions had the feature that in the uncoupled limit, they reduce to the well-known solutions
of the uncoupled symmetric or asymmetric double well problem (or the triple well problem)
as the case may be.

The purpose of this paper is to point out that all these coupled models have, in addition,
truly novel solutions, in terms of the higher order Lamé polynomials, which only exist due to the
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presence of the coupling between the two fields. In particular, while the Lamé polynomials of
order 2 are solutions of the coupled φ4 problems, they are not the solutions of the decoupled φ4

problem. Similarly, while Lamé polynomials of order 1 and 2 are the solutions of the coupled
φ6 problem, they are not the solutions of the decoupled φ6 problem. For completeness,
we also consider a coupled asymmetric–symmetric φ4 model (which corresponds to a first-
order transition in one field and a second-order transition in the other) and show that Lamé
polynomials of order 2 are the solutions of this coupled problem, even though they are
not the solutions of the uncoupled problem. This model is relevant for certain martensitic
transformations in elements [14, 15]. The significance of these solutions is that in the relevant
physical systems with two coupled variables (e.g. magnetization and strain in magnetoelastic
materials) they represent periodic domain walls in both variables. Such periodic array of
domain walls would not exist if there was no (e.g. magnetoelastic) coupling. We emphasize
that in this paper we only give those solutions of the coupled problems which are not the
solutions of the uncoupled problems. Further, none of these solutions, in terms of higher order
Lamé polynomials, are contained in our recent papers on the coupled problems [9, 10, 13].

The paper is organized as follows. In section 2, we provide the novel periodic as well
as the corresponding hyperbolic solutions for a coupled symmetric φ4 model with an explicit
biquadratic coupling in the presence of an external field (with an additional linear–quadratic
coupling) [9]. Note that the symmetric φ4 model, in the decoupled limit, corresponds to a
second-order transition in both the fields. We show that while the solutions of the uncoupled
φ4 problem are the Lamé polynomials of order 1, (i.e. sn, cn, dn), for the coupled problem,
not only the Lamé polynomials of order 1 [9], but even the Lamé polynomials of order 2
are solutions of the coupled field equations. In section 3, we provide similar novel periodic
solutions in terms of Lamé polynomials of order 2 for a coupled asymmetric φ4 model, which
corresponds to a first-order transition in both the fields [10]. In section 4, we consider similar
higher order solutions for a symmetric–asymmetric φ4 model. In section 5, we obtain the
Lamé polynomial solutions of order 1 and 2 of a coupled φ6 model even though they are not
the solutions of the uncoupled φ6 model. Finally, we conclude in section 6 with summary and
possible extensions. In view of the shortage of space, we only write down the important steps,
omitting the details which can be found elsewhere [16, 17].

2. Coupled symmetric φ4 model in an external field

This model and the periodic domain wall solutions obtained here are relevant to spin
configurations and magnetic phase transitions in multiferroic materials. In [9] we had
considered the following potential, with a biquadratic coupling between the two fields and in
an external magnetic field (Hz)

V = α1φ
2 + β1φ

4 + α2ψ
2 + β2ψ

4 + γφ2ψ2 − Hz[ρ1φ + ρ2φ
3 + ρ3φψ2], (1)

where αi, βi , γ and ρi are material (or system) dependent parameters. For α1 < 0, α2 < 0
and β1 > 0, β2 > 0, this model corresponds to second-order transitions in both fields φ and
ψ . The corresponding (static) equations of motion are

d2φ

dx2
= 2α1φ + 4β1φ

3 + 2γφψ2 − Hz[ρ1 + 3ρ2φ
2 + ρ3ψ

2], (2)

d2ψ

dx2
= 2α2ψ + 4β2ψ

3 + 2γφ2ψ − 2Hzρ3φψ. (3)

These coupled set of equations admit several novel periodic solutions (i.e. Lamé polynomials
of order 2), which we now discuss one-by-one systematically.
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2.1. Solution I

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = G + B sn2[D(x + x0),m] (4)

is an exact solution to coupled field equations (2) and (3) provided the following eight field
equations are satisfied:

2α1F + 4β1F
3 + 2γFG2 − Hzρ1 − 3Hzρ2F

2 − Hzρ3G
2 = 2AD2, (5)

2α1A + 12β1F
2A + 4γBFG + 2γAG2 − 6Hzρ2AF − 2Hzρ3BG = −4(1 + m)AD2, (6)

12β1FA2 + 2γFB2 + 4γABG − 3Hzρ2A
2 − Hzρ3B

2 = 6AmD2, (7)

2β1A
2 + γB2 = 0, (8)

2α2G + 4β2G
3 + 2γGF 2 − 2Hzρ3GF = 2BD2, (9)

2α2B + 12β2G
2B + 4γAFG + 2γBF 2 − 2Hzρ3(BF + AG) = −4(1 + m)BD2, (10)

12β2GB2 + 2γGA2 + 4γABF − 2Hzρ3AB = 6mBD2, (11)

2β2B
2 + γA2 = 0. (12)

Here A and B denote the amplitudes of the ‘pulse lattice’, F and G are constants, D is an
inverse characteristic length and x0 is the (arbitrary) location of the pulse; m denotes the
modulus of the Jacobi elliptic function sn (x, k). Five of these equations determine the five
unknowns A,B,D,F,G while the other three equations give three constraints between the
nine parameters α1,2, β1,2, γ,Hz, ρ1, ρ2, ρ3. In particular, from equations (8) and (12) it
follows that

γ < 0, |γ |2 = 4β1β2,
√

β1A
2 =

√
β2B

2. (13)

Few comments are in order at this stage.

(1) From equation (9) it follows that no solution of form (4) exists in case G = 0. Thus
no solutions exist with ψ = B sn2[D(x + x0),m] irrespective of the value of F. In fact
one can also show that no solution exists in case B = −G or if B = −mG unless
m = 1. In other words, even the solutions of the form ψ = Gcn2[D(x + x0),m] or
ψ = G dn2[D(x + x0),m] do not exist, no matter what F is, except when m = 1.

(2) In the special case of Hz = 0, the field equations (5)–(12) are completely symmetrical in
φ and ψ . It is easily shown that in this case, solution (4) does not exist.

Solution at m = 1. In the special case of m = 1, the solution (4) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = G + B tanh2[D(x + x0)], (14)

provided the field equations (5)–(12) with m = 1 are satisfied. This hyperbolic soliton solution
takes particularly simple form in two cases which we mention one by one.

(i) F = 0,G = −B. In this case, the nontopological soliton solution (14) takes the
simpler form

φ = A tanh2[D(x + x0)], ψ = B sech2[D(x + x0)]. (15)

By analyzing equations (5)–(12) it is easily shown that such a solution exists provided
γ < 0, α2 < 0, ρ3 < 0.
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(ii) F = −A,G = −B. In this limit the nontopological soliton solution (14) takes the
simpler form

φ = A sech2[D(x + x0)], ψ = B sech2[D(x + x0)] (16)

provided

D2 = α1

2
, A = 3α1

2Hzρ3
, 3ρ2A

2 = (2A2 − B2)ρ3. (17)

2.2. Solution II

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = B sn[D(x + x0),m]cn[D(x + x0),m] (18)

is an exact solution to coupled field equations (2) and (3) provided the following seven field
equations are satisfied:

2α1F + 4β1F
3 − Hzρ1 − 3Hzρ2F

2 = 2AD2, (19)

2α1A + 12β1F
2A + 2γFB2 − 6Hzρ2AF − Hzρ3B

2 = −4(1 + m)AD2, (20)

12β1FA2 + 2γB2(A − F) − 3Hzρ2A
2 + Hzρ3B

2 = 6AmD2, (21)

2β1A
2 − γB2 = 0, (22)

2α2 + 2γF 2 − 2Hzρ3F = −(4 + m)D2, (23)

4β2B
2 + 4γAF − 2Hzρ3A = 6mD2, (24)

2β2B
2 − γA2 = 0. (25)

Four of these equations determine the four unknowns A,B,D,F while the other three
equations give three constraints between the nine parameters α1,2, β1,2, γ,Hz, ρ1, ρ2, ρ3. In
particular, from equations (22) and (25) it follows that

γ > 0, γ 2 = 4β1β2,
√

β1A
2 =

√
β2B

2. (26)

Solution at m = 1. In the special case of m = 1, the solution (18) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = B tanh[D(x + x0)]sech[D(x + x0)] (27)

provided the field equations (19)–(25) with m = 1 are satisfied.

Special case Hz = 0. In the special case of Hz = 0, the field equations (2) and (3) are
symmetrical in φ and ψ . In this case, equations (19)–(25) take rather simple form. In
particular, in case Hz = 0, it is easily shown that the solution (18) exists provided

γ = 2β1 = 2β2, A2 = B2, (28)

while the remaining equations take the simpler form

3mD2 = (1 + 2x)γA2, (29)

D2 = α1x + γA2x3, (30)

−2(1 + m)D2 = α1 + x(1 + 3x)γA2, (31)

−(4 + m)D2 = 2α2 + 2x2γA2, (32)
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where x = F/A. On solving these equations, one finds that the only acceptable solution is
given by

3mx = −(1 + m) +
√

1 − m + m2, (33)

using which one can then easily express D2, α2 and γA2 in terms of α1.
In particular, at Hz = 0 and m = 1, the solution (27) exists provided relations (28) are

satisfied and further

F = −A

3
, α1, α2 < 0, γA2 = 3D2 = 3|α1|

2
, |α2| = 7

8
|α1|. (34)

It is not difficult to show that unlike the solution (18), the solution

φ = B sn[D(x + x0),m]cn[D(x + x0),m], ψ = F + A sn2[D(x + x0),m], (35)

exists only if Hz = 0. But since at Hz = 0, the field equations (2) and (3) are symmetrical in
φ and ψ , hence (35) is a solution to field equations (2) and (3) provided equations (28)–(34)
(with suitable change of parameters) are satisfied.

2.3. Solution III

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = B sn[D(x + x0),m] dn[D(x + x0),m] (36)

is an exact solution to coupled field equations (2) and (3) provided seven field equations similar
to those for the solution (18) are satisfied. One can show that this solution exists provided

γ > 0, γ 2 = 4β1β2,
√

β1A
2 = m

√
β2B

2. (37)

Solution at m = 1. In the special case of m = 1, the solution (36) goes over to the hyperbolic
nontopological soliton solution (27).

Special case Hz = 0. In the special case of Hz = 0, the field equations (2) and (3) are
symmetrical in φ and ψ . It is easily shown that the solution (36) exists provided equation (28)
is satisfied and further x = F/A is again given by equation (33) using which one can then
easily express D2, α2 and γA2 in terms of α1. At Hz = 0 and m = 1, of course the solution
goes over to the solution (27), which exists provided relations (28)–(34) are satisfied.

It is not difficult to show that unlike the solution (36), the solution

φ = B sn[D(x + x0),m] dn[D(x + x0),m], ψ = F + A sn2[D(x + x0),m], (38)

exists only if Hz = 0. But since at Hz = 0, the field equations (2) and (3) are symmetrical in
φ and ψ , hence (38) is a solution to field equations (2) and (3).

2.4. Solution IV

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = B cn[D(x + x0),m] dn[D(x + x0),m], (39)

is an exact solution to coupled field equations (2) and (3) provided seven field equations similar
to those for the solution (18) are satisfied. One can show that such a solution exists provided

γ < 0, |γ |2 = 4mβ1β2,
√

β1A
2 =

√
mβ2B

2. (40)

Solution at m = 1. In the special case of m = 1, the solution (39) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = B sech2[D(x + x0)], (41)

which is essentially the solution (14) with B = −G.
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Special case Hz = 0. In the special case of Hz = 0, the field equations (2) and (3) are
symmetrical in φ and ψ . In this case, at least at m = 1, one can show that there is no solution
to these equations. Of course this is expected since we know from the discussion of solution
(4) that at m = 1 and Hz = 0, solution (41) does not exist.

3. Coupled asymmetric φ4 model

Recently we had also considered a coupled asymmetric φ4 model [10], which in the uncoupled
limit corresponds to a first-order transition in both the fields, and had obtained periodic
solutions in terms of the Lamé polynomials of order 1. The purpose of this section is to
show that the Lamé polynomials of order 2 also constitute exact solutions of the same model,
even though they are not the solutions of the asymmetric uncoupled model, thereby giving us
genuinely nontrivial solutions of the model.

This model and the periodic domain walls solutions given below are relevant to structural
transitions in certain materials. The potential that we considered in [10] is given by
(β1 > 0, β2 > 0)

V = α1φ
2 + δ1φ

3 + β1φ
4 + α2ψ

2 + δ2ψ
3 + β2ψ

4 + γφ2ψ2 + ηφψ2, (42)

where αi, δi, βi , γ and η are material (or system) dependent parameters. Note that we have
changed the notation slightly from that followed in [10], in order to be in conformity with the
notation in the previous section. The (static) equations of motion which follow from here are

d2φ

dx2
= 2α1φ + 3δ1φ

2 + 4β1φ
3 + 2γφψ2 + ηψ2, (43)

d2ψ

dx2
= 2α2ψ + 3δ2ψ

2 + 4β2ψ
3 + 2γφ2ψ + 2ηψφ. (44)

Observe that as long as η �= 0, the two field equations are asymmetric in φ and ψ . We shall
consider solutions of these coupled field equations in case αi �= 0, δi �= 0, βi > 0, as only
then the model corresponds to a first-order transition in both the fields.

There is only one solution in this case. In particular

φ = F + A sn2[D(x + x0),m], ψ = G + B sn2[D(x + x0),m], (45)

is an exact solution to coupled field equations (43) and (44) provided eight field equations,
similar to those for the solution (4), are satisfied. Five of these equations determine the five
unknowns A,B,D,F,G, while the other three equations give three constraints between the
eight parameters α1,2, δ1,2, β1,2, γ, η. We find that this solution exists only if

γ < 0, |γ |2 = 4β1β2,
√

β1A
2 =

√
β2B

2. (46)

We also find that there is no solution in case either G = 0 or −B or −B/m so long as m �= 1.

Solution at m = 1. In the special case of m = 1, the solution (45) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = G + B tanh2[D(x + x0)]. (47)

This hyperbolic soliton solution takes a particularly simple form in two cases which we
mention one by one.

(i) F = 0,G = −B. In this limit the nontopological soliton solution (47) takes the
simpler form

φ = A tanh2[D(x + x0)], ψ = B sech2[D(x + x0)]. (48)

Such a solution exists provided γ < 0, α2 < 0.
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(ii) F = −A,G = −B. In this limit the nontopological soliton solution (47) takes the
simpler form

φ = A sech2[D(x + x0)], ψ = B sech2[D(x + x0)], (49)

provided

α1 = α2 > 0, 2D2 = α1, −6AD2 = 3δ1A
2 + ηB2, −6D2 = 3δ2B + 2ηA.

(50)

It turns out that as long as δ2 �= 0, no other Lamé polynomials of order 2 form a solution
of field equations (43) and (44).

4. Asymmetric-symmetric φ4 model

In the last section, we considered solutions in cases where both δ1 and δ2 are nonzero, i.e.
solutions of the asymmetric φ4 problem such that in both ψ and φ fields one has a first-
order phase transition. In this section, we consider the case when δ1 �= 0 while δ2 = 0.
This corresponds to having a first-order transition in φ and a second-order transition in ψ .
There are interesting physical situations such as a face-centered cubic to a hexagonal close
packed (FCC-HCP) reconstructive structural transition [14] and the martensitic transition in
cobalt [15] where this model is relevant. The solutions obtained below correspond to periodic
domain walls between FCC and HCP crystal structures. Therefore, in this section we consider
such a coupled model and obtain various solutions of this coupled model in terms of Lamé
polynomials of order 2 and their hyperbolic limit.

It is worth pointing out that as in the coupled symmetric and asymmetric φ4 cases, in the
symmetric–asymmetric φ4 model too, there are solutions in terms of Lamé polynomials of
order 1 which can be easily written down [16]. However, we do not discuss these here.

The potential we consider is given by (β1 > 0, β2 > 0)

V = α1φ
2 − δ1φ

3 + β1φ
4 + ηφψ2 + γφ2ψ2 + α2ψ

2 + β2ψ
4, (51)

where α1,2, β1,2, δ1, η, γ are system-dependent parameters. The static field equations that
follow from here are

φxx = 2α1φ − 3δ1φ
2 + 4β1φ

3 + ηψ2 + 2γφψ2, (52)

ψxx = 2α2ψ + 4β2ψ
3 + 2ηφψ + 2γφ2ψ. (53)

Observe that as long as η �= 0, the two field equations are asymmetric and hence kink-pulse
and pulse-kink solitons would be distinct.

For the uncoupled model (η = γ = 0), it is easy to show that the potential in φ corresponds
to a first-order transition while that in ψ corresponds to a second-order transition.

We now show that the field equations (52) and (53) admit Lamé polynomial solutions of
order 2, which are not the solutions of the uncoupled problem.

4.1. Solution I

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = G + B sn2[D(x + x0),m] (54)

7
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is an exact solution to coupled field equations (52) and (53) provided the field equations similar
to those for the solution (4) are satisfied.

Solution at m = 1. In the special case of m = 1, the solution (54) goes over to the hyperbolic
nontopological soliton solution (14). This hyperbolic soliton solution takes a particularly
simple form in two cases which we mention one by one.

(i) F = 0,G = −B. In this limit the nontopological soliton solution (14) takes the
simpler form

φ = A tanh2[D(x + x0)], ψ = B sech2[D(x + x0)]. (55)

It is easily shown that such a solution exists provided γ < 0, α2 < 0.
(ii) F = −A,G = −B. In this limit the nontopological soliton solution (14) takes the

simpler form

φ = A sech2[D(x + x0)], ψ = B sech2[D(x + x0)]. (56)

Such a solution exists provided

α1 = α2 > 0, 2D2 = α1, A = −3α1

4η
, B2 = 9α2

1

16η3
4η − 3δ1. (57)

4.2. Solution II

Unlike the previous section, it turns out that in view of δ2 = 0, now three more Lamé
polynomial solutions of order 2 are allowed which we present one by one.

It is not difficult to show that

φ = F + A sn2[D(x + x0),m], ψ = B sn[D(x + x0),m]cn[D(x + x0),m] (58)

is an exact solution to coupled field equations (52) and (53) provided seven field equations
similar to those for solution (18) are satisfied. In particular, such a solution exists provided

γ > 0, γ 2 = 4β1β2,
√

β1A
2 =

√
β2B

2. (59)

Further, no solution exists in case F = 0 or −A or −A/m unless m = 1.

Solution at m = 1. In the special case of m = 1, the solution (58) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = B tanh[D(x + x0)]sech[D(x + x0)]. (60)

It is not difficult to show that unlike the solution (58), the solution

φ = B sn[D(x + x0),m]cn[D(x + x0),m], ψ = F + A sn2[D(x + x0),m], (61)

does not exist as long as δ1 and η are nonzero.

4.3. Solution III

Another allowed solution is

φ = F + A sn2[D(x + x0),m], ψ = B sn[D(x + x0),m] dn[D(x + x0),m], (62)

provided seven field equations similar to those for the solution (18) are satisfied. In particular,
one can show that solution (62) exists provided

γ > 0, γ 2 = 4β1β2,
√

β1A
2 = m

√
β2B

2. (63)

Solution at m = 1. In the special case of m = 1, the solution (62) goes over to the hyperbolic
nontopological soliton solution (60).

8
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4.4. Solution IV

Finally, another allowed solution is

φ = F + A sn2[D(x + x0),m], ψ = B cn[D(x + x0),m] dn[D(x + x0),m], (64)

provided coupled equations similar to those for the solution (18) are satisfied.
In particular, one can show that such a solution exists only if

γ < 0, |γ |2 = 4mβ1β2,
√

β1A
2 =

√
mβ2B

2. (65)

Solution at m = 1. In the special case of m = 1, the solution (64) goes over to the hyperbolic
nontopological soliton solution

φ = F + A tanh2[D(x + x0)], ψ = B sech2[D(x + x0)], (66)

which is essentially the solution (41).

5. The coupled φ6 model

This model and the periodic domain walls solutions obtained below are relevant to many
structural phase transitions as well as in coupled field theories. In [13] we had considered the
following coupled φ6 model, with a bi-quadratic coupling, in one dimension with the potential:

V (φ,ψ) =
(

a1

2
φ2 − b1

4
φ4 +

c1

6
φ6

)
+

(
a2

2
ψ2 − b2

4
ψ4 +

c2

6
ψ6

)
+

d

2
φ2ψ2. (67)

We now show that in this case we add the following quartic–quadratic and quadratic–quartic
coupling terms

V ′ = e

4
φ4ψ2 +

f

2
φ2ψ4, (68)

to the potential (67), then in addition to the solutions obtained in [13], there exist truly novel
solutions in terms of Lamé polynomials of order 1 and 2 to this coupled problem, even though
these are not the solutions to the uncoupled φ6 problem. From stability considerations we shall
always take c1, c2 > 0. Further, since we are interested in a model for first-order transition,
we shall take b1, b2 > 0. As far as a1, a2 are concerned, their sign is arbitrary and the shape
of the potential depends on the ratio b2

1

/
4a1c1 and b2

2

/
4a2c2.

The (static) equations of motion which follow from equations (67) and (68) are

d2φ

dx2
= a1φ − b1φ

3 + c1φ
5 + dφψ2 + eφ3ψ2 + f φψ4,

(69)
d2ψ

dx2
= a2ψ − b2ψ

3 + c2ψ
5 + dψφ2 +

e

2
φ4ψ + f φ2ψ3.

We now show that apart from the solutions discussed in [13], this coupled model also
admits rather unusual solutions in terms of the Lamé polynomials of order 1 and 2 which we
now discuss one by one. Since there are three Lamé polynomials of order 1 (i.e. sn, cn, dn)
and since the field equations are essentially symmetric in φ and ψ , we expect six independent
solutions to the coupled field equations in terms of Lamé polynomials of order 1. In particular,
we first show that there are three periodic bright–bright, two periodic dark–bright and one
periodic dark–dark soliton solutions in terms of Lamé polynomials of order 1, which in turn
lead to one bright–bright, one dark–dark and one dark–bright hyperbolic soliton solution.
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5.1. Solution I

We look for the most general solutions to the coupled equations (69) in terms of the Jacobi
elliptic functions sn(x,m), cn(x,m) and dn(x,m) [11]. It is easily shown that

φ = A sn(Dx + x0,m), ψ = B sn(Dx + x0,m), (70)

is an exact dark–dark periodic solution to the coupled equations (69) provided the following
six coupled equations are satisfied:

a1 = −(1 + m)D2, (71)

−b1A
2 + dB2 = 2mD2, (72)

c4
1 + eA2B2 +

f

2
B4 = 0, (73)

a2 = −(1 + m)D2, (74)

−b2B
2 + dA2 = 2mD2, (75)

c2B
4 + f A2B2 +

e

2
A4 = 0. (76)

We find that the solution exists only if a1 < 0, a2 < 0, e < 0, f < 0. We obtain

D2 = |a1|
(1 + m)

, A2 = 2mD2(d + b2)

d2 − b1b2
, B2 = (d + b1)A

2

(d + b2)
, (77)

while the three constraints are

a1 = a2 < 0, (4c1c2 − |e||f |)(d + b1) = 2(e2 + 2|f |c1)(d + b2),
(78)

(4c1c2 − |e||f |)2 = 4(e2 + 2|f |c1)(f
2 + 2|e|c2).

In the limit of m = 1, the periodic solution (70) goes over to the hyperbolic dark–dark
soliton solution

φ = A tanh(Dx + x0), ψ = B tanh(Dx + x0), (79)

provided the constraints (77) and (78) with m = 1 are satisfied.

5.2. Solution II

It is easy to show that

φ = A cn(Dx + x0,m), ψ = B cn(Dx + x0,m) (80)

is an exact bright–bright periodic solution to the coupled equations (69) provided six coupled
equations similar to equations (71)–(76) are satisfied. In particular, we obtain

D2 = a1

(2m − 1)
, a1 = a2, A2 = 2m(d + b2)D

2

(b1b2 − d2)
, B2 = (b1 + d)A2

(b2 + d)
, (81)

while the remaining two constraints are again given by equation (78). Note that a1 = a2 >

(<) 0 if m > (<) 1/2.
In the limit of m = 1, the periodic solution (80) goes over to the hyperbolic bright–bright

solution

φ = A sech(Dx + x0), ψ = B sech(Dx + x0), (82)

provided the constraints (78) and (81) with m = 1 are satisfied.

10
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5.3. Solution III

Yet another bright–bright periodic soliton solution is

φ = A dn(Dx + x0,m), ψ = B dn(Dx + x0,m), (83)

provided six coupled equations similar to equations (71)–(76) are satisfied. In particular, we
obtain

D2 = a1

(2 − m)
, a1 = a2 > 0, A2 = 2(d + b2)D

2

(b1b2 − d2)
, B2 = (b1 + d)A2

(b2 + d)
,

(84)

while the remaining two constraints are again given by equation (78).
In the limit of m = 1, the periodic solution (83) again goes over to the hyperbolic

bright–bright soliton solution (82).
Note that while for the solution (70), d2 > b1b2, for the solutions (80) and (83), its the

other way around, i.e. d2 < b1b2.

5.4. Solution IV

Yet another bright–bright periodic soliton solution is

φ = A
√

m cn(Dx + x0,m), ψ = B dn(Dx + x0,m), (85)

provided six coupled equations similar to equations (71)–(76) are satisfied. We find that this
solution is also valid only if e < 0, f < 0. Further, two of the relations are given by

(4c1c2 − |e||f |)2 = 4(e2 + 2|f |c1)(f
2 + 2|e|c2), (4c1c2 − |e||f |)A2 = 2(f 2 + 2|e|c2)B

2.

(86)

In the limit of m = 1, the periodic solution (85) again goes over to the hyperbolic
bright–bright soliton solution (82).

5.5. Solution V

In addition, there are two dark–bright periodic soliton solutions. One of them is

φ = A sn(Dx + x0,m), ψ = B cn(Dx + x0,m), (87)

provided six coupled equations similar to equations (71)–(76) are satisfied. We find that this
solution exists provided

A2 =
b1 ±

√
b2

1 − 4a1c1 − 4(1 − m)D2c1

2c1
, B2 =

b2 ±
√

b2
2 − 4a2c2 − 4D2c2

2c2
. (88)

Further, unlike the previous four solutions, this solution exists only if e > 0, f > 0 and two
of the constraints are given by

(4c1c2 − ef )A2 = 2(2ec2 − f 2)B2, (4c1c2 − ef )2 = 4(2ec2 − f 2)(2f c1 − e2), (89)

while the other two constraints are

B2 = b1A
2 − 2a1 − 2D2

d + eA2
= 2a2 + 2(1 − m)D2 + dA2

b2 − f A2
. (90)

In the limit of m = 1, the periodic solution (87) goes over to the hyperbolic dark–bright
soliton solution

φ = A tanh(Dx + x0), ψ = B sech(Dx + x0), (91)

satisfying the constraints (88)–(90) with m = 1.
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5.6. Solution VI

Another dark–bright periodic soliton solution is given by

φ = A
√

m sn(Dx + x0,m), ψ = B dn(Dx + x0,m), (92)

provided six coupled equations similar to equations (71)–(76) are satisfied. We find that this
solution exists provided two of the constraints are again given by equation (89) while A2 and
B2 are now given by

A2 =
b1 ±

√
b2

1 − 4a1c1 + 4(1 − m)D2c1

2c1
, B2 =

b2 ±
√

b2
2 − 4a2c2 − 4mD2c2

2c2
, (93)

B2 = b1A
2 − 2a1 − 2mD2

d + eA2
= 2a2 − 2(1 − m)D2 + dA2

b2 − f A2
. (94)

In the limit of m = 1, the periodic solution (92) goes over to the hyperbolic dark–bright
soliton solution (91).

We now show that quite remarkably, the coupled model characterized by the field
equations (69) not only admits periodic solutions in terms of Lamé polynomials of
order 1, but it also admits novel periodic solutions in terms of Lamé polynomials of order 2.
It is worth recalling once again that neither Lamé polynomials of order 1 nor of order 2 are
solutions of the uncoupled φ6 problem. Since there are five Lamé polynomials of order 2,
and since two of these are of the form A sn2[D(x + x0),m] + F , and further, the two field
equations (69) are symmetrical in φ and ψ , in principle there could be ten solutions of order
2. However, it turns out that only two of these are admitted by the field equations (69) which
we now discuss.

5.7. Solution VII

It is easily shown that

φ = A sn2(Dx + x0,m) + F, ψ = B sn(Dx + x0,m)cn(Dx + x0,m), (95)

is an exact periodic solution to the coupled equations (69) provided the following 11 coupled
equations are satisfied:

a1F − b1F
3 + c1F

5 = 2AD2, (96)

a1A − 3b1AF 2 + 5c1AF 4 + eB2F 3 + dB2F = −4(1 + m)AD2, (97)

−3b1A
2F + 10c1A

2F 3 + eB2F 2(3A − F) +
f

2
B4F + dB2(A − F) = 6mAD2, (98)

−b1A
3 + 10c1A

3F 2 + 3eAB2F(A − F) +
f

2
B4(A − 2F) − dAB2 = 0, (99)

5c1A
4F + eA2B2(A − 3F) +

f

2
B4(F − 2A) = 0, (100)

c1A
4 − eA2B2 +

f

2
B4 = 0. (101)

a2 +
e

2
F 4 + dF 2 = −(4 + m)D2, (102)

−b2B
2 + 2eAF 3 + f F 2B2 + 2dAF = 6mD2, (103)
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b2B
2 + c2B

4 + 3eA2F 2 + f B2F(2A − F) + dA2 = 0, (104)

−2c2B
4 + 2eA3F + f AB2(A − 2F) = 0, (105)

c2B
4 − f A2B2 +

e

2
A4 = 0. (106)

Four of these equations determine the four unknowns A,B,D,F while the other equations
give constraints between the nine parameters a1,2, b1,2, c1,2, d, e, f . In particular, we find that
the solution exists only if

eA2 = f B2, e3 = 8c2
1c2, f 3 = 8c2

2c1, (107)

and further if F �= 0.
In the limit of m = 1, the periodic solution (95) goes over to the hyperbolic solution

φ = A tanh2(Dx + x0) + F, ψ = B tanh(Dx + x0)sech(Dx + x0), (108)

provided the constraints (96)–(106) with m = 1 are satisfied. There is one special case when
this solution takes a simpler form, i.e. when A = −F , the solution is given by

φ = −A sech2(Dx + x0), ψ = B tanh(Dx + x0)sech(Dx + x0), (109)

provided equation (107) is satisfied and further

D2 = a1

4
, a1 = 4a2 > 0, d = −b2, b2

2(f − e) = 6a2c2e,

(110)

B2 = 6a2

b2
, A2 =

−b1 ±
√

b2
1 − 6a1c1

2c1
.

Thus in the φ variable, one is at T < Tc (transition temperature) since b2
1 > 6a1c1.

5.8. Solution VIII

The other allowed solution is

φ = A sn2(Dx + x0,m) + F, ψ = B sn(Dx + x0,m) dn(Dx + x0,m), (111)

which is an exact periodic solution to the coupled equations (69) provided 11 coupled equations
similar to equations (96)–(106) are satisfied. We find that the solution exists only if

emA2 = f B2, e3 = 8c2
1c2, f 3 = 8c2

2c1, (112)

and further if F �= 0.
In the limit of m = 1, the periodic solution (111) also goes over to the hyperbolic solution

(108).

6. Conclusions

In this paper, we have shown that the Lamé polynomials of order 2 are the periodic solutions
of the coupled φ4 problems when either the potentials in both the fields are symmetric, or
when both are asymmetric or when the potential is symmetric in one and asymmetric in the
other field. The latter model is also relevant for reconstructive phase transitions in many
materials [14, 15]. These are novel solutions in the sense that while they are solutions of the
coupled problems, they are not the solutions of the corresponding uncoupled problems. In
particular, in all the three cases, we have shown that while the Lamé polynomials of order 1
are the solutions of both the coupled and the uncoupled problems, the Lamé polynomials of
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order 2 are the solutions of the coupled problems, but not of the uncoupled ones. A physical
realization of these solutions is periodic domain walls in both spin orientations and lattice
strain, e.g. in multiferroic materials.

It is worth emphasizing here that there are three Lamé polynomials of order 1 and as a
result one has nine different solutions for the coupled φ4 problems which we have presented in
[9, 10]. Since there are five Lamé polynomials of order 2 one would have naively expected 16
solutions of order 2 for the coupled φ4 problems (note that two of the Lamé polynomials are
of the form F + A sn2(x,m)). However, it turned out that while there are six allowed solutions
in the symmetric φ4 case in an external field, only one solution is allowed in the asymmetric
case and four solutions are allowed in the asymmetric–symmetric case.

It may be noted here that previously, Hioe and Salter [18] had shown similar features for
coupled nonlinear Schrödinger (NLS) equations. They also pointed out that precisely when
such solutions exist, the coupled NLS equations are integrable and they pass the Painlevé test
[19]. Thus one might get the impression that the existence of higher order Lamé polynomials
as solutions of the coupled problem (but not that of the uncoupled problem) could be related
to the integrability of the coupled as well as the uncoupled systems. However, our work has
clearly shown that this is not so. In particular, it is well known that the φ4 field theory (both
symmetric or asymmetric or mixed) is a nonintegrable field theory. As a further support to
our argument, we considered in section 5 and elsewhere [17] a coupled φ6 model studied by
us recently [13] and show that provided we add extra interaction terms which are quadratic–
quartic in the two fields, then Lamé polynomials of order 2 are also the solutions of the coupled
problem (though they are not the solutions of the uncoupled problem).

Based on these examples, we conjecture that for most of the coupled models, novel
solutions (i.e. those which are solutions of the coupled but not the uncoupled problem) will
exist as long as there is a coupling term between the fields which is of the same order as the
highest power of the uncoupled fields. Further, in those cases where Lamé polynomials, of
say order 1, are solutions of the uncoupled problem, we conjecture that if there are n-coupled
fields with coupling terms being of the same order as the highest power of the uncoupled fields,
then Lamé polynomials of order n will also be the solutions of the coupled problem. Note
that four coupled φ4 fields are required to model different magnetic phases of the hexagonal
multiferroic materials [20]. It will be interesting to examine our conjecture in a few coupled
field theory models. We hope to address these issues in future studies.

In this paper, we have shown that the Lamé polynomials of order 1 and 2 are periodic
solutions of a coupled φ6 problem. These are novel solutions in the sense that while they are
solutions of the coupled φ6 problem, they are not the solutions of the corresponding uncoupled
problems. In particular, we have obtained six solutions in terms of Lamé polynomials of order
1 and two solutions in terms of Lamé polynomials of order 2. These results are applicable to
both the structural phase transitions [4, 5] and field theoretic contexts [6–8] and correspond to
periodic domain walls in crystal structures with different symmetry or in two different fields.

Although not presented here, we have also obtained four solutions of the coupled φ6–φ4

problem in [17], both when the φ4 potential corresponds to a first order (i.e. asymmetric) as
well as a second-order transition (i.e. symmetric). Note that while the solutions of the coupled
problem are also the solutions of the uncoupled φ6 problem, but they are not the solutions
of either the symmetric or the asymmetric uncoupled φ4 problems. These solutions are also
useful in understanding coexistence of different crystalline structures in elements [15, 21, 22]
and ferroelectrics [23, 24]. It will be interesting to obtain solutions of a few other coupled
field theories and with couplings that are not bi-quadratic. An example of a coupled model
with linear–quadratic coupling occurs in the context of isostructural transitions [25]. It is
conceivable that in some special cases a linear–cubic coupling may be symmetry allowed.
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